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Abstract—Self-awareness is the foundation for many of
the nowadays desired system characteristics, such as self-
optimization and self-adaption. This awareness is rooted in
observation and sensory data obtained by the system regarding
itself and its environment. Given the important role which data
collection plays in creating this awareness, we believe that it
merits more attention than it has so far received. For example,
increasing the amount of collected data can overload the system
with increased computational cost, communication load, and
power consumption. Self-awareness can help the system by
making data collection smarter and better oriented. In this paper,
we propose an attention-based data collection method, inspired
by self-awareness, and exploit its potential in the context of Multi-
Processor System-on-Chips (MPSoCs). Our case study shows that
this method can reduce the computation and communication load
related to processing sensory data up to 95%, at the cost of a
negligible overhead at the sensor node.

I. INTRODUCTION

While the number of transistors continue to increase with
every technology generation, since 2004, the increase of
frequency has leveled off at around 4 GHz [1]. Ever since,
parallelism and specialization have been the main agents of
performance and efficiency improvements. Parallelism leads to
multi- and many-core processors, and specialization manifests
itself as heterogeneity and the increasing use of accelerator
units for specific tasks such as video, audio, baseband, and
graphics processing. As a consequence, resource management
has become more and more complex.

Although available resources keep growing, available power
envelop does not follow the same rate of growth, mostly due
to temperature constraints. This leads to the peculiar situation,
that all resources can never be active at the same time [2],
a phenomenon that has been termed dark silicon [3]. The
underlying reason is that the voltage cannot be scaled down
sufficiently [4, Figure 13] to compensate for the increase of
transistors on chip. Hence, resource management is becoming
more complicated due to ever increasing tight constrains.

Fault management has several dimensions due to various
causes of faults, masking effects and various available tech-
niques that have to be combined to provide a reliable system
behavior in the presence of adverse failure scenarios [5], [6].
Aging and wear-out phenomena are temperature and thus
activity dependent [7]. In order to maximize lifetime, the
load should be distributed such that resources which have
undergone a higher aging rate in the past or have a higher
temperature currently are spared from high loads .
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In summary, on-chip resource management is a formidable
challenge since it has to consider and balance workload and
performance, real-time and safety constraints, power con-
sumption and temperature, battery load and lifetime, fault
and failure mitigation, aging and lifetime policies. All these
objectives depend on variables, measured continuously during
operation, such as temperature, power consumption, work-
load, and occurrence of faults. This continuous monitoring,
itself comes at some overhead costs such as the area and
power consumption of the sensors themselves, communication
between sensors and the control unit, and the computation cost
at the management unit. Self-awareness [8], however, holds the
promise for a management level on top of local controllers
that can handle incomplete or unreliable measurements, and
reconcile different objectives for complex computing systems
with many dynamically changing resources and using an
optimized amount of resources. Another promise of self-
awareness, on which we focus in this work, is its capability to
reduce some of the overhead caused by continuous monitoring,
without causing any loss of performance.

The rest of this paper is organized as the following: In
Section II, we briefly review the concepts of self-awareness,
based on which we propose a new attention-based technique
in Section III. In Section IV, we present our simulation results
and discussion before concluding the paper with Section V.

II. SELF-AWARENESS, SENSING AND ATTENTION

As elaborated in detail in the literature, e.g., [9], [8],
self-awareness implies abstraction of primary input data; a
mapping into the semantic domain with respect to what is
desirable and what is not, keeping track of the history, a model
of goals and a model of the environment. Self-awareness
plays a critical role in control loops such as Observe-Decide-
Act [10], Observe-Orient-Decide-Act [11], or MAPE-K [12],
in which it provides the foundation for effective decision
making. In fact, it also includes a model of this decision
making process. However, only recently the significance of the
observation and abstraction process has received a more proper
acknowledgement [13]. Between the measurement of data and
decision making, the steps of data abstraction, their assessment
in semantic, context sensitive terms, and their importance with
respect to given goals and expectations are indispensable [13].
In addition, it is inefficient and often an obstacle to collect
and process all possible data. In contrast, the higher level



context and the measured data together should guide the data
collection and processing, via a mechanism that has been
termed “attention” [13], [14].

Several research groups have proposed solutions for on-
chip resource management based on sensors and control loops.
Zeppenfeld et al. [15] propose an autonomic SoC platform
for dynamic resource management. The data abstraction and
assessment is done via Learning Classifier tables which are
based on rules and have a limited capability to be dynamically
updated. SEEC [10] is a framework for performance and re-
source management. It monitors performance with application
heartbeats (meaning that the platform checks the application
performance in regular intervals, called heartbeats), and allo-
cates resources accordingly to meet the registered objectives.
In essence, the application itself is responsible for the data
abstraction mechanism by providing the interpretation of the
data in the application context. CPSoC [8] has one of the most
elaborate mechanism for sensing and processing of data. A
large set of sensors is distributed over the chip, collected via a
dedicated network and processed by custom hardware called
Introspective Sentient Units (ISUs) [8]. Elaborate processing
and interpretation of the data is done and used for prediction of
performance, power consumption, and other vital properties.
It involves all layers, from the circuit to the architecture and
middleware to the application, which allow decision making
at the appropriate level [8].

These promising examples highlight that more work is re-
quired to fully exploit the the processes of sensing, abstraction
and attention. For instance, as elaborated by TaheriNejad et
al. [13], meta-information about collected data is as important
as the data themselves, e.g., in order to assess the reliability
of the data and give the measured data their deserved weights.

In the following sections we further elaborate on this aspect
of self-awareness and show how the processing of temperature
measurements can be reduced up to 95% with a context
specific attention mechanism that filters out irrelevant data.

III. PROPOSED TECHNIQUE

Nowadays, numerous sensors are added on die to help
achieving a more comprehensive monitoring and a better
control over various parameters on chip. With the exponential
growth of the number of sensors on chip, e.g., on a many-
core system with more than hundred cores, computational and
communication resources needed for processing the sensory
data in order to make an appropriate control decision is not
anymore insignificant. To alleviate this problem, conventional
methods such as down-sampling could be applied, for which
the Nyquist rate is the limit to avoid loss of information.
However, if we consider application and context we can
considerably reduce the number of samples without missing
critical events.

Taking temperature as an example, in a heterogeneous
Multi-Processor System-on-Chip (MPSoC), multiple cores and
various accelerators will hardly ever be loaded uniformly.
Most applications will load some of the cores and accelerators
heavily while they barely use some others. As a consequence,
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the temperature in the heavily used areas may reach the
temperature limit which requires tight monitoring to keep it
contained. Other areas, which are not critically heated up, on
the other hand, do not need such frequent measurements. The
reason being that critically high temperatures can negatively
affect the performance and lifetime of the chip more than
temperatures in the vicinity of the normal operation.

Hence, we propose a new attention-based sensor architec-
ture where each sensor sends its observed value for processing,
only when an important event has occurred (e.g., the temper-
ature increases above a threshold). In this case the threshold
reference is always updated after a temperature reading is sent
to the control block. This distinguishes the proposed method
from traditional thresholding techniques where the reference
is an absolute value [16]. The proposed technique is also
different from watchdog timer [17] since there is no time-
out in this technique. Moreover, it does not store temperature
values the way a buffer does to compensate for slow processing
of data [18].

The proposed architecture, Fig. 1(b), needs a simple data
path (which could be only an adder), a multiplexer, two
registers, and a small control logic in addition to the traditional
architecture, Fig. 1(a). Using this hardware, the mode of
operation can still be flexibly adjusted by management units
higher in the control hierarchy. For example, the registers
could be filled with the average values observed by the
temperature +A, where A could be the standard deviation of
the signal, statistically obtained and calculated by the higher
level processing units. A could also be a percentage (decided
by the designer) of the average value. In cases where certain
absolute changes are of interest, A could be an absolute
value too. Similar scenarios can be implemented, using the
latest reported value instead of the average value. Furthermore,
instead of symmetric thresholds (+A), asymmetric thresholds
could be used (+Aq, and —A»).

The proposed strategy will slightly increase the compu-
tational hardware and processing effort at the sensor node,
however, we contend that this overhead is relatively minor
compared to the processes already running on digital sensors
for calibration or the area used by analog sensors. This
overhead is even more negligible if the sensor communicates
to higher control units through methods such as a Network-
on-Chip (NoC). The major impact of this approach is reducing
the cost of processing data and decision making at the system
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Fig. 1. Block Diagram of Temperature Sensors: (a) Traditional Design, (b)
Proposed Attention-based Design.
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Fig. 2. Power profile of different units of the studied core.

level as well as unburdening the communication.

IV. SIMULATION RESULTS
A. Simulation Set-up: Temperature Data

In order to show the efficacy of our proposed attention-based
sensor architecture, we performed an experiment using an Intel
Nehalem based 64-bit processor with an area of 32mm?2,
running SPLASH-2 benchmark suit. Barnes algorithm was
simulated on a single core processor in Snipersim [19] and
taken as basis. The resulting power profile was adapted to
obtain an extended period of high power consumption (and
consequently an extended variation in the temperature profile).
Hotspot [20] is employed to obtain the temperature profile for
the system. Figures 2 and 3 show the obtained power and
temperature profiles, respectively.

B. Experiments and Results

Since the focus of our experiments is on the number
of samples that high-level controllers need to process for
temperature management, it is only fair to assume that the
original data (sampled at 16u.s) would be down-sampled based
on the Nyquist rate. Therefore, we first extracted the frequency
elements of the temperature data in MATLAB® using FFT
analysis. Based on the Nyquist criteria, a down-sampling factor
of 100 was applied which left us with 20 samples during the
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Fig. 3. Temperature profile of different units of the studied core.
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TABLE I
NUMBER OF ATTENTION-BASED SAMPLES (AS ARE IN °C)

Unit A=1 Imp. A=2 Imp. A=5 Imp
Memory 13 35% 9 55% 4 80%
ALU 4 80% 2 90% 1 95%
D-Cache 2 90% 2 90% 1 95%

32ms length of the experiment. We can see in Fig. 4, an
example showing that the down-sampled signal (blue-dotted-
cross) follows the original signal (black-solid-unmarked) very
closely and without loss of any particular information.

To model the proposed architecture we loaded the registers
with their latest reported value +A, where A was an absolute
temperature value, given that in MPSoC management schemes
based on temperature, actual values and absolute changes are
of most interest. We ran the experiments for three different
values of A, namely 1, 2 and 5°C. That is, if the temperature
had a change beyond 1, 2 or 5°C, compared to its last reported
value, the sensor will report the new value. Arguably, these As
can provide the temperature management unit, with enough,
if not overly fine resolution for management [21]. Our results
show that for the majority of the 10 sensors (7 of them) in this
study, attention-based sensors reported only one value (their
initial value) as compared to 20 values which should have
been reported after down-sampling. Number of the samples
reported by sensors which reported more than one value are
inserted in Table I. Next to each value stands the percentage
of improvement, compared to the number of samples after
Nyquist down-sampling. Lastly, Fig. 4 shows the curves of the
original, Nyquist down-sampled, and attention-based sampled
(A = 1°C and 5°C) for the Memory unit of the processor.

C. Discussion

As we could already see in Fig. 3, majority of the units
monitored by the sensors, have a fairly monotonic, flat tem-
perature profile. So it is not surprising to see that 7 out of 10
sensors report only one value in the beginning and no other
values during the experiment. In other words, during this 32ms
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sions for A = 1°C (pink-solid-square) and A = 5°C' (green-dashed-circle).



they experience less than one degree Celsius change in tem-
perature, which can be simply disregarded by the temperature
management unit. That means a 95% saving of the processing
in the temperature management unit and communication load
between the sensor and the management unit.

Regarding other signals, let us consider the worst case
scenario, the unit with most changes in this experiment;
Memory. By looking at its temperature profile in Fig. 4, we
can see that the signal after down-sampling using proposed
attention-based method, with A = 1°C, follows the original
signal very closely. That means that even with the (overly fine)
resolution of 1°C, a 35% saving on the number of samples
which should be processed is achieved with virtually no loss of
information. However, it can be argued that most temperature
management units do not need to and do not react to 1°C
change of temperature. We contend that 5°C' is a fine-enough
resolution for majority of temperature management tasks. In
which case, as we can see in Fig. 4, the most important
events (the rise, peak, and fall of temperature) in Memory are
properly captured using only 4 samples, which leads to an 80%
saving of processing and communication, compared to the
original 20 samples. From this saving (running the temperature
management algorithm only 4 times instead of 20 times) we
have to subtract the processing overhead at the sensor node;
that is, 2 x 20 comparisons (i.e., single subtractions).

Furthermore, the trend of reports in Fig. 4 should not be
overlooked. We can see, for example, in the case of A =
5°C (green-dashed-circle), after the initial report, no value
is reported in the first 15ms, whereas 3 values are reported
between 15 and 30ms. The reason being that, no drastic
temperature changes happen in the first 15ms, in contrast to
the next 15ms. We observe a similar trend in the A = 1°C
case, which shows the asymmetric behavior of attention-based
data collection. In other words, as intended, the frequency of
reporting values, depends on the actual events observed instead
of being uniformly distributed over time. This effect is more
pronounced in the case of other signals where only one value
is reported instead of 20 values (required by Nyquist criteria)
over the 32ms, and yet no event of importance is overlooked.

V. CONCLUSION

In this paper, we propose a new architecture for data
collection in MPSoC which is inspired by the concepts of self-
awareness, more specifically, attention-based sensing. Sensors
report a value to the management and processing unit only
when an ‘event of importance’ has occurred. Interpretation of
‘event of importance’ is application dependent, in this study,
that was a change of temperature bigger that a user-defined A.
To this end, an architecture, which uses a minimal hardware
and processing overhead at the sensor node, can considerably
reduce the communication and processing load at higher levels
of the system. We evaluated the proposed method in a test
scenario, where 10 sensors monitoring different units of a
Nehalem architecture based processor were equipped with the
attention-based data collection units. For the majority of the
sensors, this led to more than 95% reduction in the number
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of reported values during a 32ms window, compared to the
reported number of data, down-sampled using Nyquist criteria.
Furthermore, we showed that by setting the attention span, A,
to 1°C, a 35% saving on communication and temperature data
processing can happen with virtually no loss of information.
Whereas, by an attention span of 5°C an 80% improvement
of efficiency can be achieved without missing any event of
importance as far as temperature management is concerned.
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