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Abstract—Memristor characteristics like high speed, low
power, and passive memory retention make it suitable for
application in several fields. Neuromorphic systems, digital and
analog circuits, or simply a memory unit, are some of these
applications. A memristor exhibits different properties, which
allow each field of application to take the desired advantages of
this device. Memristor-based “Implication”, which implements
the IMPLY logic using material properties of memristors, makes
all logic operations possible in designs, which consists of only
memristors as fundamental constituents. The focus of this article
is on memristor-based Full-adder, which uses only the IMPLY
logic. We propose an algorithm with the merit of needing fewer
execution steps and a smaller number of memristors.

I. INTRODUCTION

Memristor, known as the fourth circuit element, is a two
terminal device, which establishes a relation between electric
flux (charge) and the magnetic flux [1]. This relation is
exhibited by changing the resistance of this component, as
the current passes through it. The constitutive equations of
memristor result in memristance and memductance [2], [3].
They imply that this circuit element has a memory effect based
on the history of the past current or voltage applied to it.

The resistance of the memristor (a thin layer of metal-
oxide, e.g., TiO2, with two differently doped regions sand-
wiched between two conductors [4]) alters between its min-
imum (Ron) and its maximum (Roff )1 as the bias voltage
changes. By increasing the voltage in positive bias2, the dopant
(charge carriers) diffuse from the doped zone of memristor to
the undoped side and as a consequence the length of the doped
area extends, which leads to a smaller resistance. The case
R = 0, or Ron, is valid when the whole length is filled with the
doped area and the case R = 1, or Roff , happens in negative
biasing, when the whole memristor length becomes undoped
[5]. If memristor is used in digital circuits, the logical states 0
and 1 are represented respectively by Off- and On-states and
considering a tolerance range in between.

Among various applications [6] for memristors, logic cir-
cuits implemented with “only memristors” is the topic of
our work. This approach provides a structure which can
replace the classical “Von Neumann architecture” [7]–[10].
We focus on Full-adders, due to the fact that they are a very
basic component of many digital circuits and improving their
performance can improve many processing systems.

1Or in other words, within resistance interval of [0, 1], if we normalize the
memristance to its maximum.

2Positive bias is when the doped area has a higher voltage than the undoped
area and for negative biasing it is the other way around.

TABLE I: Truth Table of IMPLY Logic & its Memristor States.

a b Ra Rb b′ = a→ b Rb′

0 0 Roff Roff 1 Ron

0 1 Roff Ron 1 Ron

1 0 Ron Roff 0 Roff

1 1 Ron Ron 1 Ron

The remainder of this paper is organized as follows; An
introduction to IMPLY and converting other Boolean logics to
IMPLY is given in Section II. In the same section, we review
logic minimization and existing full-adder implementations
using IMPLY logic. In Section III, lay our contributions; our
proposed algorithm and the equivalencies in IMPLY logic,
which helped us in developing the new algorithm. To put our
work in perspective, with respect to other similar works, we
have included comparison and some discussions in Section III.
Finally, Section IV concludes the paper.

II. BACKGROUND

A. IMPLY Logic Structure

The natural structure, physics and other characteristics
of memristor make it very compatible with performing the
IMPLY, rather than Boolean logic [11]. The truth table of
IMPLY logic is shown in Table I, where a → b represents
a implies b. The end value will be saved in b, which means
that this memristor loses its initial value. We can see that the
IMPLY has for all combinations of the two inputs, a and b,
an output value of 1, except for a = 1 and b = 0. IMPLY
logic can be implemented as a circuit with two memristors,
which are connected to a conventional resistor. Memristors
have the role of digital switches and input values are the initial
resistance (state) of them. Fixed voltages are applied to the
memristors, and after applying these fixed voltages, the output
is the final state of the memristor connected to the voltage
with the higher magnitude. The design procedure of IMPLY
logic using memristors is described in details in other works,
for instance, see [12].

Although, IMPLY logic is not the only solution for imple-
menting memristive Full-adders (for an example see [13]), it
is an attractive option because it can lead to memristor-only
structures, which are very compatible with the crossbar array
design. This design is widely used in neuromorphic networks,
FPAAs and memories [6]. In such a structure, other logic
operations, can be performed using IMPLY and FALSE [14].
In which FALSE, is a function that always yields zero at the
output. One possible solution is shown in Table II.
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TABLE II: Implementing Boolean Logics using IMPLY
Logic Operations Implementation Based on IMPLY Logic

NOT a a → 0 ≡ a → FALSE
a OR b (b → 0) → a
a NOR b

(
(b→ 0)→ a

)
→ 0

a NAND b b→ (a→ 0)
a AND b

(
b→ (a→ 0)

)
→ 0

a XOR b
{(

(a→ 0)→ b
)
→

[(
a→ (b→ 0)

)
→ 0

]}
→ 0

B. Existing Algorithms and Logic Minimization

Full-adder can be demonstrated as a function, f(3, 2), that
is, a function with 3 inputs (two operands and one Carry-in)
and two outputs (one Sum and one Carry-out). For an n-bit
Full-adder with a, b and c as input operands, a set of a and
b memristors (a = {a1, a2, ..., an} and b = {b1, b2, ..., bn})
and one memristor for Carry-in as input, as well as a set
of work memristors (s = {s1, ..., sn}) are needed (Although,
theoretically, for any number of inputs, two work memristors
are sufficient for computing any Boolean function [15]). Work
memristors are used for copying the inputs to them, saving
the outputs, or conducting some computations on them. For
the output, n + 1 memristors are needed (one for Carry-out
and n for Sum). Some of the existing logic minimization and
methods for implementing a Full-adder using memristors, as
well as their performance report for a single bit adder, are as
it follows:

1) Conjunctive Normal Form (CNF):

S =(cin + a+ b).(cin + a+ b).(cin + a+ b).

(cin + a+ b)

Cout =(cin + a).(cin + b).(a+ b)

For building one bit Full-adder with the help of CNF, as it is
explained in [11], 89 total steps (48 steps for calculating the
Sum, 39 steps for the Carry-out and two additional steps for
initializing two of the work memristors) are needed and four
work memristors are used3.

2) Disjunctive Normal Form (DNF), implemented using
XOR logic:

S = (cin.a.b) + (cin.a.b) + (cin.a.b) + (cin.a.b)

= cin ⊕ (a⊕ b)

Cout = (cin.a.b).(cin + a+ b).(cin + a+ b)

+ (cin.a.b) = a.b+ cin.(a⊕ b)

The improved Full-adder which is built with XOR logic [16],
needs 29 steps and three work memristors. In this work, it is
shown that 13 steps are necessary for each XOR. Since two
XORs are needed for calculating the Sum, then as a result, 26
steps will be needed for calculating the Sum, and 3 extra steps
for the Carry.

In [14], the authors have considered only the number of
IMPLYs as delay for the output and tried to reduce the delay
time. In the end, it needed 19 cycles for calculating the Sum
and 18 cycles for the Carry. This article has an assumption, that
the clearing of work memristor s, occurs just at the beginning
and the device will not be cleared in subsequent steps. In other

3We note that, as mentioned before, theoretically two work memristors
could be sufficient, however, this would increase the number of steps and
consequently slow down the adder.

TABLE III: Truth Table of Full-Adder
cin a b s cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

words, in order to avoid clearing the s in other steps, we
will need more memristors. The improved Full-adder circuit
mentioned in [17], needs 20 steps for computing the Sum
and three more steps for the Carry (23 in total), and 3 extra
memristors in addition to input memristors (a, b and cin).

C. Serial vs. Parallel Implementation

There are two approaches for the implementation of a
Full-adder; serial and parallel. Most approaches [11], [16],
[17] use serial based implementation, in which all memristors
are in the same row. This is the standard structure for the
crossbar design. In serial implementation, since all memristors
including input, output and work memristors are in one row,
only one operation (IMPLY or FALSE) can be performed
in each clock cycle. More recently, a parallel approach was
introduced by Kvatinsky et al. [16]. In parallel model each bit
stands in a different row with its related work memristors. The
advantage of this model is that all independent operations (such
as FALSE operation or operations which don’t use the results
from other steps) can be executed simultaneously. The parallel
design, in which each bit of the Full-adder is in a different row,
has some disadvantages such as; (i) Increasing the number of
memristors to 9 for each bit (9N ), (ii) some operations can not
be executed until the former bit is finished with the Carry-out
result, (iii) Due to the fact that each row works in serial and
each operation related to a row should be performed in one
cycle, only independent operations in different rows can be
performed simultaneously, (iv) its structure differs from that
of the standard crossbar design.

Therefore, given that serial structure is easier to implement
(compatible with crossbar), and is more standard, in this
work, we focus on the serial design. Lastly, we note that
for improving the functionality of a Full-adder a compromise
between two factors, namely number of memristors (area) and
computation steps (speed), should be considered.

III. PROPOSED FULL-ADDER ALGORITHM

A. Logic Minimization

In order to achieve a more effective implementation for
IMPLY based Full-adder, the IMPLY statements should be
minimized as much as possible and the appropriate equivalent
statements for implementation should be chosen. Here are ten
of these equivalencies in IMPLY logic, which we worked out
and used to minimize the necessary steps for implementing the
Full-adder algorithm.

1. a→ (b→ c) ≡ b→ (a→ c)

2. (a→ b)→ a ≡ (a→ b)→ b ≡ a→ b
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3. (a→ b)→ b ≡ (a→ b)→ a ≡ b→ a

4. a→ a ≡ a and a→ a ≡ a

5. b→ a ≡ a→ b and a→ b ≡ b→ a

6. a→ b ≡ b→ a (Equivalent to OR)

7. a→ b ≡ b→ a (Equivalent to NAND)

8. (a→ b)→ (b→ a) ≡ (a→ b)→ (a→ b) ≡

(a→ b)→ (a→ b) (Equivalent to XOR)

9. (a→ b) ≡ (b→ a) (Equivalent to NOR)

10. (a→ b) ≡ (b→ a) (Equivalent to AND)

Working backwards, from the output to the inputs, we need
to find two statements, whose implication results directly in
Carry-out and Sum, as shown in the truth table of the adder,
Table III. That is, to find two statements P and Q, so that the
result of their implication would be Carry-out or Sum; e.g.,
Cout = P → Q. The following shows our findings where the
bit-stream pattern inside brackets corresponds the top-down
bit-stream pattern in Table III.

1) Carry-out = [00010111] : According to the truth table of
IMPLY (Table I), if the first operand (antecedent) is zero or the
second operand (consequent) is 1 then the output is certainly
1. However, in order to have a 0 output, the antecedent must
be 1, which determines the pattern for P . Therefore, to find
the desired statements, P should have a structure like, P =
[111X1XXX], where X shows “don’t care”. Seven potential
solutions are shown in Equation 1. It should be mentioned that
each statement, which stands for each outcome, is just one of
the possibilities of equivalent terms.

P = [111X1XXX]

P1 = [11101010] : (a→ c)→ b

P2 = [11101100] : (b→ c)→ a

P3 = [11111000] : (a→ b)→ c

P4 = [11111101] : c→ (a→ b)

P5 = [11101111] : b→ (a→ c)

P6 = [11111011] : c→ (b→ a)

P7 = [11111110] : c→ (b→ a)

(1)

The corresponding terms for Q are as it follows (numbers refer
to the statements in Table IV):

Q1 = [000X0X1X] : (2, 5, 6)

Q2 = [000X01XX] : (4, 6, 3)

Q3 = [00010XXX] : (1, 4, 5)

Q4 = [000101X1] : (4)

Q5 = [000X0111] : (6)

Q6 = [00010X11] : (5)

Q7 = [0001011X] : −

(2)

2) SUM = [01101001]: Carrying out the same procedure
for the Sum, we found the following solutions:

TABLE IV: Q Statements

1 a→ (c→ b) 2 b→ (a→ c) 3 c→ (b→ a)

4 (a→ c)→ b) 5 (b→ c)→ a 6 (a→ b)→ c

P = [1XX1X11X]

P1 = [11011111] : b→ (a→ c)

P2 = [10111111] : b→ (a→ c)

P3 = [11110111] : c→ (a→ b)

P4 = [11111110] : c→ (b→ a),

(3)

in which corresponding Q terms are:

Q1 = [01X01001]

Q2 = [0X101001]

Q3 = [0110X001]

Q4 = [0110100X]

(4)

However, we were not able to find any statements among
combinations with three inputs, which could match these
outputs directly. Therefore, the next step is to find a more
complex and at the same time minimized term for the needed
values. Using Karnaugh map we found some statements, from
which those containing the same terms as Carry-out were
selected in order to minimize the steps for implementing the
Full-adder.

B. Improved Full-adder Algorithm

Here, we propose a method, which benefits from the
advantages of both smaller foot-print and smaller number
of steps. Proposed approach for computing Sum and Carry-
out is presented in logical statements of Equation (5) and
Equation (6), respectively. The precise algorithm that uses
these statements for calculating the Sum and Carry-out is
spelled out in Table VI. The proposed algorithm can output
the results in 22 computational steps, using only 2 work
memristors (i.e., the minimum number of work memristors
possible).

S =
[
(a→ b)→

(
(a→ b)→ c

)]
→
(
(a⊕ b)→ c

)
(5)

Cout =
[
(a→ b)→

(
(a→ b)→ c

)]
(6)

Advantages of the proposed algorithm are:

Fig. 1: Serial structure for 8-bit full adder
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TABLE V: Summary of comparisons between the proposed algorithm and other similar works for n = 8 (an 8-bit Full-adder).

Algorithm Number of Memristors Number of Steps
Input Output Reused Work Total Improv. IMPLY FALSE Total Improv.

[16] 2n + 1 n + 1 1 2 3n + 3 (27) 30% 19n 10n 29n (232) 25%
[17] 2n + 1 n + 1 1 2 3n + 3 (27) 30% 15n 8n 23n (184) 5%

Proposed 2n + 1 n + 1 n + 1 2 2n + 3 (19) - 15n 7n 22n (176) -

1) Speed: In serial application the computation needs 22
Steps, instead of 23 steps in the best previous work [17].

2) Area: The Carry-out result will be saved on the same
memristor as Carry-in (c memristor) and in addition to that,
the Sum will be saved on the same memristor as the input
(a memristor), which reduces the need for an extra output
memristor. Total number of memristors for an n bit Full-adder
is 2n+3 (e.g., 19 for 8 bit), which is n memristor less than the
previous works [16], [17]. Number of needed work memristors
for one bit is 2, in comparison to 3 in [17] and [16].

As mentioned, designing a Full-adder is a compromise
between area and speed (calculation time). Hence, the merit
of the algorithms are determined based on those two criteria,
namely the number of needed memristors and the number of
execution steps. In Table V, these measures are evaluated and
compared for this work and two other related recent works
in the literature. In this table, the percentage of improvement
(for an 8-bit implementation; n = 8) in comparison with other
works is also given.

We observe that the proposed algorithm in this work shows
a positive improvement in both aspects of merit. That is, 30%
better in number of memristors (which approaches 33% when
n→∞) as well as 5% and 25% in number of steps, compared
to the approach in [17] and [16], respectively.

TABLE VI: Proposed algorithm & its steps for computing Sum
and Carry-out according to Equation (5) and Equation (6)

Step Operation Equivalent logic

1 s1 = 0 FALSE(s1)

2 s2 = 0 FALSE(s2)

3 a→ s1 = s′1 NOT (a)

4 b→ s2 = s′2 NOT (b)

5 s′1 → b = b′ NOT (a)→ b

6 a→ s′2 = s′′2 a→ NOT (b)

7 a = 0 FALSE(a)

8 b′ → a = a′ NOT
(
NOT (a)→ b

)
9 s′′2 → a′ = a′′ NOT

(
XOR(a, b)

)
10 s1 = 0 FALSE(s1)

11 c→ s1 = s′1 NOT (c)

12 s′′2 → c = c′
(
a→ NOT (b)

)
→ c

13 a′′ → s′1 = s′′1 NOT
(
XOR(a, b)

)
→ NOT (c)

14 a = 0 FALSE(a)

15 s′′1 → a = a′ NOT [NOT
(
XOR(a, b)

)
→ NOT (c)]

16 s2 = 0 FALSE(s2)

17 c′ → s2 = s′2 NOT [
(
a→ NOT (b)

)
→ c]

18 b′ → s′2 = s′′2

(
NOT (a)→ b

)
→ NOT [

(
a→

NOT (b)
)
→ c]

19 b′ → c′ = c′′
(
NOT (a)→ b

)
→ [

(
a→ NOT (b)

)
→ c]

20 c′′ → a′ = a′′
{
(
NOT (a)→ b

)
→ [

(
a→ NOT (b)

)
→

c]} → {NOT [NOT
(
XOR(a, b)

)
→

NOT (c)]} = Sum
21 c = 0 FALSE(c)

22 s′′2 → c = c′
NOT{

(
NOT (a)→ b

)
→ NOT [

(
a→

NOT (b)
)
→ c]} = Carry-Out

IV. CONCLUSION

Since the first implementation of passive memristor in
2008, the popularity of this device has been on the rise. Their
capability to serve as elements of memory as well as logic
and calculation makes them further interesting. In this paper,
after reviewing the latter potential of memristors, we focused
on memristor-based Full-adders which use IMPLY logic. We
proposed a new algorithm which outperforms previous similar
works by finishing the operation 5-25% faster, whereas it
decreases the number of required memristors by 30-33%.
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