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Abstract

Two new efficient and robust ant colony algorithms are proposed. These algorithms contain two new and reasonable local updating
rules that make them more efficient and robust. While going forward from start point to end point of a tour, the ants’ freedom to make
local changes on links is gradually restricted. This idea is implemented in two different forms, leaving two new algorithms, KCC-Ants
and ELU-Ants. To evaluate the new algorithms, we run them along with the old one on the standard TSP library, where in almost all of
the cases the proposed algorithms had better solutions and even for some problem samples found the optimal solution.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many optimization problems were found to be non-
polynomial. Using intelligent search algorithms is one
strategy to tackle these type problems. Genetic algorithm
(GA) (Nagata et al., 1997), Tabu search (Glover & Laguna,
1997), ant colony algorithm (Blum et al., 2005; ANTS,
2000) and . . . are the main intelligent search algorithms
that can be mentioned.

Ant colony algorithm is a mathematical model of ants
behavior in finding the shortest path between nest and
food. The search capability of ants, using no visual sign,
is the most attractive aspect of their behavior. Passing
through the paths, each ant leaves pheromone on its path.
The amounts of pheromone on different paths make ants
able to improve the paths between nest and food they pass
through (Beckers, Deneubourg, & Goss, 1992; Goss, Aron,
Deneubourg, & Pasteels, 1989; Holldobler & Wilson,
1990). They can also find the new shortest path when the
former one is destroyed, i.e. because of an obstacle (Bec-
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kers, Aron, Deneubourg, & Pasteels, 1993). Ants’ capabil-
ity in improving and shortening the paths inspired scientist
to develop algorithms for solving optimization problems.
The best and most successful ones were developed by
Deneubourg and his assistants (Goss et al., 1989).

The common problem to evaluate search algorithms
especially ant colony algorithm is traveling sale man prob-
lem (TSP).

Consider cities C1, C2, C3, . . ., Cn with d(Ci,Cj) as the
distance between Ci and Cj. we have a complete graph of
cities with connecting lines between each pair of cities. If
d(Ci,Cj) = d(Cj,Ci) then the problem is symmetric and
otherwise is asymmetric. Here the problem is finding the
shortest Tour, where a Tour is a route which passes
through each city once and only once! On the other words
a tour is a collection of links that connect cities in a closed
and connective ring graph. The direct distance between two
cites is named link, and when an ant completes its tour it is
said that it end a cycle and to try more may start another
cycle. Fig. 1 shows and example of such a problem.

Shown in Fig. 1, there are many different tours. For
example we can consider two tours T1 = ABCDEA and
T2 = ADEBCA. The length of each tour can be calculated
as below: LT1

= d(A,B) + d(B,C) + d(C,D) + d(D,E) +
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Fig. 1. Symmetric TSP problem with five cities.
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d(E,A) = 4 + 3 + 5 + 2 + 2 = 16, LT2
= d(A,D) + d(D,E) +

d(E,B) + d(B,C) + d(C,A) = 3 + 2 + 2 + 3 + 4 = 14.
Above calculations show that T2 is shorter and so better

than T1, but the question is whether another shorter tour
exists or T1 is the shortest one? How can we systematically
find the shortest tour? Answering these questions equals to
solve the TSP. In different papers it’s proved that TSP is a
NP-Hard Problem (Lawler, Lenstra, Rinnooy Kan, &
Shmoys, 1985).
Fig. 2. Ant colony algorithm: a overall view.

Fig. 3. An agent in primary parts of its tour (a) freer to selects the more
desirable link, but in final parts (b) has less possibility of selecting more
desirable path.
1.1. The ant colony algorithm

As a top view, the algorithm can be described as below.
A number of agents (ants) move through the different paths
and leave pheromone on their passed path. Thus they affect
other ants while selecting links (or the order of cities in the
path) to establish their path. In fact in each step of estab-
lishing a tour, an ant selects the links with more phero-
mones with more probability. Fig. 2 shows the overall
view of the algorithm structure.

Different versions of ant algorithms differ in each section
of structure shown in Fig. 2.

Different parts of the ant colony algorithm affect on its
efficiency. As will be discussed in next section, different
strategy for each part of the algorithm has been examined
to improve the algorithm’s efficiency. The efficiency mainly
is the quality of the found solutions. Whatever a solution is
closer to the optimal solution it has more quality. One of
the most important parts of the algorithm is the local
updating rule which is emphasized in this paper. We intro-
duce new interpretation of the concept and role of local
updating rule and consequently design two new rules based
on the interpretation. The new local updating rules are
used in the ant algorithm, resulting two new ant algo-
rithms. Our experiments show they are more robust and
efficient than the last ones (Fig. 3).

The rest of the paper is as follows: In Section 2 the ant
algorithm history, implementations and modifications is
studied. Section 3 is dedicated to introduce the proposed
algorithms. The results of some experiments on standard
TSP problem samples and some random problems along
with comparison with other algorithms are presented in
Section 4. Finally Section 5 contains conclusion remarks
and some offers for more researches.
2. The literature review

The complete discussion about historical aspects of the
ant algorithm is too long to be covered in this paper. So
we have selected some of the papers which include impor-
tant modifications.

For each paper we focus on most important parts of the
ant algorithm as below:
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• Ant’s primary set up.
• The rule of selecting next cities by ants.
• Pheromone updating.

The paper (Colorni, Dorigo, & Maniezzo, 1992) is an
introductory paper on ant colony algorithm. In this paper
the Ant-Cycle algorithm is introduced and some primitive
ideas, like pheromone updating and probability of selecting
a link, are described. Then the parameter tuning was inves-
tigated and finally the results were reported. Here we pay to
different parts of the proposed algorithm.

Ant’s primary set up: in this paper, all three possible
strategies have been examined.

1. All ants start the tour from the same city.
2. Equal numbers of ants start from each city.
3. Ants are distributed on cities, randomly.

Their investigation proved that the second strategy is
better than the first one. The third strategy has a little dif-
ference with the second one, but has slightly better results.

Selecting next city (Link): the rule used is a statistical
equation where the link with more pheromone and less
length has more chance to be selected (if the ant has not
passed the link before). Now consider an ant, say number
K, be in the city i and intend to select other unselected city
to go (to add a link to its uncompleted tour). Here a city,
say j, (If ant has not passed it before) would be selected
with the following probability:

P k
ijðtÞ ¼

sijðtÞ½ �a� gijðtÞ½ �bP
kRtabulist

sikðtÞ½ �a� gikðtÞ½ �b
if j R tabu list

0 otherwise

8<
: ð1Þ

Where sij is the pheromone amount of link (edge) between
Ci and Cj, gij is the inverse of d(Ci,Cj), a and b are adjust-
able parameters to weight the significance of pheromone
and length in the selection of next city.

Pheromone updating: the paper only uses a global updat-
ing. When an ant completes a tour it updates and changes
the pheromone amount of its passed path (all links on the
passed path). The rule of this update is as shown in Eq. (2).

sijðt þ nÞ ¼ q � sijðtÞ þ Dsij

Dsij ¼
Pm
k¼1

Dsk
ij

ð2Þ

Where sij is the pheromone of link between cities i and j. n

is the time required to complete a tour and q is a coefficient
such that (1�q) represents the evaporation of pheromone
in each tour completion time. Dsk

ijis computed as Eq. (3).

Dsk
ij ¼

Q
Lk

ifði; jÞ 2 k-th ant’s tour tabu list

0 Otherwise

(
ð3Þ

Q is a constant and Lk is the tour length of k-th ant.
Others parts: the paper has a good discussion on param-

eter tuning. Presenting some curves of the results and val-
ues of parameters, it offers optimum values as a = 1,
b = 2 or 5, q = 0.5. It also contains a table about problem
solution, search space dimensions, average cycles and time
required to find optimum.

The paper (Colorni, Dorigo, & Maniezzo, 1996), first
presented ants’ behavior and the artificial algorithm
(Ant-Cycle), and then proposed two new algorithms, 1-
Ant-Density and 2-Ant-Quantity. The main parts of the
algorithms are as follows:

Ant’s primary set up: the ants are distributed but it has
not been mentioned whether uniformly or randomly (it
may be cause of their vicinity in results).

Selecting next city: the selecting rule is the same as Eq.
(1) and no changes were made in this part.

Pheromone updating: Ant-Cycle uses the previous pher-
omone updating rule but in the two new algorithms the
updating model has been modified so that instead of updat-
ing all link of a tour after completing it, each ant updates
the pheromone of the recent passed link locally. Thus
Local Updating was presented and used in this paper for
the first time.

The mentioned local updating rule of Ant-density and
Ant-Quantity are as Eqs. (4) and (5), respectively.

Dsk
ij ¼

Q if the k-th ant goes from city i to j

between t and t þ 1

0 Otherwise

8><
>: ð4Þ

Dsk
ij ¼

Q
dij

if the k-th ant goes from city i to j

between t and t þ 1

0 Otherwise

8><
>: ð5Þ

Where, Q is a constant in both algorithms. dij is the dis-
tance between city i and city j.

Other parts: this paper has also a discussion on param-
eter tuning. The best results of Ant-Cycle was achieved
using previous values of parameters but for two other algo-
rithms the best results was obtained by q = 0.99. With opti-
mum parameters the performance of the Ant-Cycle was
better than the two other. The Ant-Density was better than
Ant-Quantity.

The paper includes many other charts and discussions,
like stagnation and algorithm behavior for different param-
eter values. They also showed that the optimal number of
ants to achieve better or optimum solutions in minimum
cycles is approximately equal to the number of cities.

They also studied the effect of elitist ants (some ants with
better result affect the tour pheromone more than others)
on the performance of the algorithm. Finally they have
examined the algorithm on some other problems too and
made some comparisons with other heuristic algorithms.

The paper (Dorigo et al., 1993) is another derivation of
ant algorithm, called ant colony system (ACS). They imple-
mented Ant-Q to solve TSP (Dorigo et al., 1996).

Ant’s primary set up: Ants are located randomly on
selected cities.

Selecting next city: This paper uses a new selection rule
named ’’State Transition Rule’’. In this rule the selection is
done using Eq. (6).
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s ¼ argðijÞRtabumax sa
ij � g

b
ij

n o
if q 6 q0

S Otherwise

(
ð6Þ

In this equation q0 is a parameter and q is a random
number (both in [0, 1]) and s is the selected city. S is a city
which will be determined by Eq. (1). So with probability of
q0 the most attractive link will be selected and with (1�q0) a
link will be selected by Eq. (1).

Pheromone updating: Both local and global updating are
used. The global updating rule obeys Eq. (7).

sðt þ 1Þ ¼ ð1� qÞsðtÞ þ qDs ð7Þ

Ds ¼ 1

LShT

LShT is the length of shortest tour founded in a cycle, i.e.
this implementation uses the elitist ants’ idea with only
one elite ant. Here only the best elite ant can update its
path and other ants are not allowed affect their tours.The
local updating rule is something like Eq. (8) with the local
updating constant (LUC) of s0.

sðr; sÞ ¼ ð1� kÞ � sðr; sÞ þ k � s0 ð8Þ
Here s(r, s) is the pheromone of the link connecting cities r

ands. In this paper k and q are equal (both are the same
and model pheromone evaporation) but they may differ
in general.

The paper also offers Eq. (9) as a formula for choosing
s0 adaptively.

s0 ¼
1

nLnearest

ð9Þ

Where n is the number of cities and Lnearest is the tour
length produce by the nearest neighbor heuristic.

Other parts: In this paper the experiments were done by
10 ants and b = 2, a = 1 and q0 = 0.9 and the results were
compared with other algorithms (such as SA, NNs, GA,
EP, a combination of simulated annealing and genetic
algorithms (AG) . . ..) as well.

They also examined ACS for some bigger problems. For
these problems they implemented a slightly modified ver-
sion of ACS which incorporates a more advanced data
structure known as candidate list (Reinelt, 1994; Johnson
et al., in press). A candidate list is a list of preferred cities
to be visited as next city; it is a static data structure which
contains, for a given city i, the cl closest cities. Here an ant
chooses the next city to move to from candidate list. Only if
none of the cities in the candidate list can be visited it con-
siders the other cities. They reported better results than the
other algorithms, using many charts and tables.

In the paper (Kaegi & White, 2003) the idea of elitist
ants was used with another implementation, which is more
suitable for parallel processing.

Ant’s primary set up: Each ant is placed on a random
city.

Selecting next city: Eq. (1) is the selection rule with the
same parameters.
Pheromone updating: this paper used the updating rule
of Ant-Cycle (Colorni et al., 1992). No local update was
used and only global update was considered. The phero-
mone updating was reinforced by elitism concept.

In this paper, instead of reinforcing the pheromone
update only for some elitist ants after Ant-Cycle update,
the Ant-Cycle update is done again for whole ants but with
the ant’s local best tour, saved in the ant’s memory. So
after completing a tour, each ant updates its local tour
memory and if the current tour is better than former ones,
then the new tour will be saved as the best tour of the ant.

Other parts: Experiments were done by parameters of
a = 1, b = 5, q = 0.5 and s0 = 10�6. Their results showed
that their algorithm is better than the last best algorithms
in convergence time.

The document (Maniezzo, Gambardella, & De Luigi,
2004) discusses about some special Ant Algorithm imple-
mentation like ant system (AS), ant colony system (ACS)
and approximated non-deterministic tree search (ANTS).
The two first one were discussed above and the last one
which is based on partial solutions will be discussed here.

Ant’s primary set up: Random distribution.
Selecting next city: State transition rule was used with a

little change: Eq. (1) was replaced with Eq. (10).

P k
ijðtÞ ¼

sijðtÞ½ �aþ gijðtÞ½ �bP
kRtabu list

ð sikðtÞ½ �aþ gikðtÞ½ �bÞ
if j R tabu list

0 otherwise

8><
>: ð10Þ

The parameters of the equation are the same as used
before.

Pheromone updating: Here link pheromones are updated
immediately when ants pass them. This updating obeys Eq.
(11).

Dsij ¼ s0ð1�
Zcurr � LB

Z � LB
Þ ð11Þ

Where Zcurr is current solution, Zis the average of previous
solutions and LB is a lower bound on the optimal problem
solution.

So the pheromone level of last link is increase if Zcurr is
lower than Z, otherwise decreased.

Other parts: After representing ant algorithm different
implementations the document investigates non-TSP prob-
lems like sequential ordering problem, vehicle routing
problem, quadratic assignment problem and some others.

The paper (Meibodi & Noferesty, 2006) is a different
approach aimed to improve the algorithm’s performance.
The main idea of the paper is to modify values of parame-
ters while the algorithm is running. The approach uses
learning automata to find the best values of parameters.

Generally this approach could be implemented on each
derivatives of ant algorithm. This algorithm is an AS
adapted to the Steiner Tree problem. Their report demon-
strate their success in improvement the main algorithm
results.



Fig. 4. The effect of old algorithms (Green-Wide), Kcc-AntS (Red-Star)
and ELU-AntS (Blue-Narrow) on local pheromone update along their
tour.

1 http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html.
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3. The proposed algorithms

As said above we propose two new algorithms which
contain innovative parts especially local updating rule. In
these algorithms different parts are designed more logically.
The main novel points are two innovative local updating
rules as follows:

When a tour starts, all links have the same amount of
pheromone and so they have equal chance to be selected
by ants. When an ant selects a link and passes through it,
the pheromone amount of the link will be increased by the
local update rule (which is reverse proportional to the length
of link). This process makes the edge more desirable for
other ants that have this edge as a choice in their path. More
amount of pheromone on an edge, more desirable to select.

Is it a good strategy to give all agents the same possibil-
ity of affecting on the edges’ pheromone? Consider an ant
in its primary steps, while the ant arrives to a city and
wants to choose its next link (city), the number of possible
cases is y big, because it has passed just a few cities and
consequently just a few links are prohibited to be selected,
it can freely choose the most desirable link (with more
pheromone and less length) as its next link.

Now consider the same ant in its final steps of tour. Here
it has passed most cities and now have few city to choose.
Because at this situation it passed most of the cities, the
current selected link may not have a significant effect on
the quality of the tour, so it seems logical to reduce its abil-
ity of changing the last links pheromone.

Consider a bad choice in primary parts of a tour (cause
of selecting path rule or some obligation of links), it may
cause successive bad selections in latter parts and may
increase errors and finally cause to bad result. And so a
good start may lead in bad result, therefore it seems to
be logical to let agents have more effect on pheromone
update where they are in their initial steps and less effect
when they’re going to finish the tour. Based on above dis-
cussions two new ant algorithms were designed and a lot of
experiments were done to compare new algorithms with
former ones. These two algorithms have the same global
structure as the standard one. In the first algorithm called
Kcc-AntS, Eq. (8) was replaced with Eq. (12).

sðr; sÞ ¼ sðr; sÞ þ K � cc � s0

Cl
cc
g

ð12Þ

Where ‘‘cc’’ is the current city number (i.e. the number of
cities passed till now). Cl is the current length of passed
path of each ant and finally K & g are two parameters
which determine the significance of the number of passed
cities (cc) and length of past paths (Cl) in the updating pro-
cess. In the second algorithm called ELU, local updating

rule for a problem with M cities (node) obeys Eq. (13).

sðr; sÞ ¼ sðr; sÞ þ s0 � e�
5cc
M ð13Þ

As it is obvious, increasing cc, the second term of Eq. (13)
is exponentially decreasing toward zero and when cc = M

the term is approximately zero (e�5 � 0). So the ants play
fewer roles in local pheromone update when they are in
their final parts of tour. As it was discussed before, the main
idea is that the ants have more ability to change the phero-
mone of the initial links than the last links. One of the log-
ical choices is using a decreasing exponential function of cc.
But as discussed before in the first cycle, when an ant starts,
the links have equal pheromone, so the probability has
more effect on selecting links than links’ pheromone. After
some cycles the pheromone would demonstrate its effect. So
it could be better to increase ants’ effect in local pheromone
update when the pheromone has made its effect on edges
and after some step decrease ants affect. Also the length
of passed paths could show how elite is an ant. Considering
all these reasons, Eq. (12) could be satisfying.

Fig. 4 clarifies the difference between local updating rule
used in former algorithms and two one (Kcc-AntS and
ELU-AntS). In this virtual problem with 100 cities, ants
have a constant effect along the tour in the previous local

updating rule. In ELU-AntS, ants have less ability to
change pheromone (almost zero) when they are in the last
part of the tour. In Kcc-AntS the ants have some starting
chance for local update which increases for a while and then
will decreases toward zero.
4. Experiments

To evaluate the two new algorithms, good experiments
were done on 17 standard TSP problems caught from
TSP Library and the results were compared with the stan-
dard algorithm.1 In addition, the s0 was varied in order to
evaluate algorithms’ result while the primary parameter set
up is changed. We interpret this as the robustness against
parameter. The experiments were done in similar situation
except in local update rule which was different for each
algorithm. The two new algorithms were structured as
follows:

Primary setup: Random distribution.
Selecting next city: State transition rule, using Eq. (10).
Global pheromone update: It was done using Eq. (7).
Local pheromone update: It was done using

http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html
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Fig. 5. New algorithms has better results and less variation.
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Fig. 6. Even in those few problems which old algorithm had better results,
it had worse variance/average.

Table 1
Average, minimum and variation coefficient of results caught in experi-
ments different algorithms. New ones have obviously better results

Problem Old Kcc ELU

Average

Gr24 1381.2 1414.0 1438.3
Fri26 992.3 940.5 941.8
Bayg29 1786.6 1704.8 1707.9
Bays29 2296.9 2137.7 2224.2
Dantzig42 813.3 843.4 843.9
Swiss42 1478.4 1446.2 1446.8
Gr48 5952.0 5718.5 5759.5
HK48 5990.7 5722.1 5772.7
Brazil58 24838.5 23735.2 23540.1

Pr76 75408.0 72519.9 73117.0
Eil101 255.6 228.4 229.5
Bier127 55469.6 48278.3 49126.1
KroB150 18795.2 17278.2 17046.0

KroB200 20911.7 19626.5 19527.9

Tsp225 2056.4 1882.4 1892.3
A280 56048.7 47931.3 48880.5
Lin318 24927.4 23059.0 23085.7

Minimum

Gr24 1338 1366.8 1412.9
Fri26 974.8 937.7 937.5

Bayg29 1766.7 1694.9 1698.9
Bays29 2235.4 2134 2187.6
Dantzig42 799.8 820.4 832
Swiss42 1451.5 1436.2 1426

Gr48 5869.8 5665.4 5613.2

HK48 5898.8 5653.1 5662
Brazil58 24123.3 23314.4 23110.8

Pr76 73190.8 71012.4 72060.6
Eil101 247.6 221.6 225.3
Bier127 54150.2 47286.6 47778.2
KroB150 18540.3 17069.3 16888.4

KroB200 20633.7 19383.1 19280.9

Tsp225 2019.3 1841.8 1849.5
A280 54601.2 46696.1 47297.6
Lin318 24566.5 22885.7 22890.0

100* Variance/average

Gr24 34.44 32.71 15.14

Fri26 9.84 0.21 0.54
Bayg29 11.86 2.85 1.52

Bays29 28.44 0.51 30.15
Dantzig42 6.21 14.14 5.34

Swiss42 19.02 2.14 9.82
Gr48 21.28 22.24 62.56
HK48 59.30 16.73 47.61
Brazil58 513.95 441.02 396.06

Pr76 1898.6 671.82 401.90

Eil101 3.68 3.75 2.31

Bier127 1020.16 391.75 635.84
KroB150 114.48 71.49 62.68

KroB200 105.09 83.10 142.02
Tsp225 37.50 37.68 16.97

A280 858.74 616.56 887.8
Lin318 196.51 78.66 96.96
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• Old algorithm: Eq. (8).
• Kcc-AntS: Eq. (12).
• ELU-AntS: Eq. (13).

Parameters setup:
PDS2 = 0.2 k = 0.1 q0 = 0.9 g = 9
q = 0.9 a = 0.1 b = 2 K = 0.1

It should be mentioned that a, b, q & q0 were selected as
was advised in Colorni et al. (1992), Colorni et al. (1996)
and other parameters were selected optionally. For each
value of s0, algorithms were run 15 times and the average
was assigned as the result of that value of s0. Also the algo-
rithms were iterated on each problem for 18 different values
of s0. The results demonstrate that Old Algorithm has
worst results and large amount of variations respect to
the two new algorithms. Also the results show that the
offered value for s0 is not optimum in all situations and
all problems. As an example Fig. 5 may be attended.

Although the old algorithm has better results for some
problems (only two problems) but as shown in Fig. 6, the
variance/average of the results of the old algorithm was
bigger than new ones (it was more than two times of
ELU-AntS).

By the way when the problem dimension gets larger
(number of cities increases) new algorithms give better
results.

Table 1 includes the average of 18 algorithms’ results for
different values of s0, assigned as average, minimum of
these 18 averages (each one stand for 15 iterations with
2 Pheromone density setup.
one value of s0) and finally variance/average multiplied
by 100.

It can simply be find out from the above tables that new
algorithms have better results and variation respect to old
algorithms.
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Fig. 7. Two new algorithms have very similar behavior.

Table 2
Although Kcc AntS is better than ELU AntS but it can be ignored
somehow because it’s less than 2% worse than Kcc AntS

Problem Old Kcc ELU

Old algorithm

Gr24 0 0 127.5
Fri26 5.5 4 4585.7
Bayg29 4.8 4.2 680.3
Bays29 7.4 4.7 5476.5
Dantzig42 0 0 16.3
Swiss42 2.2 1.8 788.8
Gr48 4.1 4.6 0
HK48 4.7 4.3 254.4
Brazil58 5.5 4.4 29.8
Pr76 4 3.1 372.4
Eil101 11.9 11.7 59.3
Bier127 15.2 14.5 160.4
KroB150 10.3 9.8 82.6
KroB200 7.1 7 26.5
Tsp225 9.2 9.6 121
A280 16.9 16.9 39.3
Lin318 8.1 7.3 149.8

Kcc-AntS

Gr24 2.4 2.4 2.4
Fri26 0 0 0
Bayg29 0 0 0
Bays29 0 0 0
Dantzig42 3.7 3.7 3.7
Swiss42 0 0 0
Gr48 0 0 0
HK48 0 0 0
Brazil58 0.8 0.8 0.8
Pr76 0 0 0
Eil101 0 0 0
Bier127 0 0 0
KroB150 1.4 1.4 1.4
KroB200 0.5 0.5 0.5
Tsp225 0 0 0
A280 0 0 0
Lin318 0 0 0

ELU-AntS

Gr24 4.1 4.1 4.1
Fri26 0.1 0.1 0.1
Bayg29 0.2 0.2 0.2
Bays29 4 4 4
Dantzig42 3.8 3.8 3.8
Swiss42 0 0 0
Gr48 0.7 0.7 0.7
HK48 0.9 0.9 0.9
Brazil58 0 0 0
Pr76 0.8 0.8 0.8
Eil101 0.5 0.5 0.5
Bier127 1.8 1.8 1.8
KroB150 0 0 0
KroB200 0 0 0
Tsp225 0.5 0.5 0.5
A280 2 2 2
Lin318 0.1 0.1 0.1

H.M. Naimi, N. Taherinejad / Expert Systems with Applications 36 (2009) 481–488 487
Comparing two new algorithms, it can be understood
that Kcc-AntS have better Averages respect to ELU-AntS
but worse Minimums. These two are equal in variance/
average of the results.

As it is shown in Fig. 7, two new algorithms have very
similar behavior but Kcc-AntS algorithm is slightly better.
Selecting an algorithm is dependent to the problem is to be
solved. Since the algorithms are tolerant against changes of
s0, it could be ignored as a parameter that needs tuning (i.e.
using new algorithms there is no critical need to tune s0).
As it is clear in Eq. (12), Kcc-AntS has two parameters
to tune (K & g) but ELU-AntS (Eq. (13)) has no parameter
to tune.

Table 2 includes the relative distance respect to the best
result found by three algorithms. And as it’s shown in the
table, old algorithm has usually errors between 4% and
17% and where the new algorithms have usually errors
less than 2% and some times they found the optimal
solutions.

So based on discussions above, new algorithms are
almost always preferred to old algorithms, especially when
the problem dimension increases. And between two new
algorithms Kcc-AntS is slightly better than the other. This
slight superiority may be ignored, regarding to 2% error
and NO tuning parameters of ELU-AntS.

Figs. 8 and 9 are graphs of Table 2 which are embedded
to have better overview about difference of algorithms.

As it is shown in Figs. 8, increasing the problem dimen-
sion, error percent of old algorithm increases but the new
ones decrease.

Variance of error decreases by problem dimension
increase but new algorithms are faster, as it is shown in
Fig. 9.

It’s interesting to be mentioned that we found shorter
tours and improve results in six problems, respect to what
exists in TSP Library. The problems which better results
were found are:

• Brazil58
• Pr76
• Bier127
• KroB150
• KroB200
• TSP225
And in one problem (Fri26) the same result with TSP

Library was caught.
As a final note, it should be mentioned that Kcc-AntS

was run for K = 1 and K = 1/cc but generally they could
not be better than 0.1cc-AntS and ELU-AntS.
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5. Conclusion and further researches

Two new ant algorithms were presented in this paper
and were compared with the best former algorithm and
found better results.

It was shown that offered s0 in former algorithms was
not adequate but in new algorithms the error percent
against s0 variation is usually less than 2% which should
be ignored and there is no need to tune this parameter in
these algorithms.

Comparing two new algorithms, both have very similar
behavior but Kcc-AntS (with K = 0.1) is slightly better but
it had two parameters to tune, while ELU-AntS had NO
tuning parameter. So while we face with combinational
algorithm which tune themselves (Meibodi & Noferesty,
2006) or we have tuning possibility the Kcc-AntS is offered
and otherwise ELU-AntS.

Further researches:
Further researches should be done on:

• K&g tuning in Kcc-AntS and tuning other parameters of
algorithms.
• Studying algorithm behavior against problem specifica-
tions and find an exact relation to explain it.

• Decreasing tuning parameters and make algorithm
robust against parameter tunes (as it was done in this
paper for s0).
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